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Abstract - Tllughening of many ~eramics ~an be a~complishedby creating dilatation in the St'Coml
phase particles th.ll ~ause the matri.\ to crack. In this paper the stress intensity factors for annular
cracks .tbout dila!ant particles in a matri\ under a normal stress arc calculated.

I. INTRODUCTION

Ceramics can be toughened by second phase particles that produce a residual stress system
either during cooling as a result of ditlcrences in the codTIcient of thermal expansion (Evans
and Cannon. 19~6; Porter c{ al.. 1979; Gupta c{ al.. 1978; Riihle ct al.. 1986. 1987;
Davidge. 1974; Davidge and Gn:en. 1%8; Lange. 1974; Mujatac{al.. 19~J; Mecholsky.
1910) or duc to a stress-induced phase transfornmtion. In both c;lses the residual stresses
may le~tll to microcracking depending upon the particle size (ChlUsscn. 1976; Chlllssen c{

al.• 1977; Riihlc ('{ al., 1986. 1987; Davidge and Green, 1968; Da\idge. 1974; Lange. 1974;
Mujata c{ al.. 19~J; MedlOlsky. 19XJ).

If the second phase parlide shrinks away from the malrix tensile. radial slresses can
deflect the fraclun: palh and cause loughening (Ev'l!ls and Cannon. 1986; Da vidge. 1974;
Davidge and Green, 1l)6~). Cin.:lIllllcrenlial microcracks will occur between the partides
and m~llrix if the partides arc bigger than a certain critical size (Davidge. 1974; Davidge
and Green, 19(8). These circllllllcn:ntialmicrocracks do not greatly alkct lhe slrength of
lhc ceramic provided the particles arc not loo large. This method of toughening is of
importance in many ceramics of commercial significance such as electrical porcelain con
taining quartz liller particles.

However. this paper is aimed al ceramics where second ph<lse particles increase in size
relative to the matrix :.tnd cause radial microcracks (Evuns and C<lnnon. 19H6; Porter el

a/.. 1979; Gupta et al.. 1978; Claussen. 1976; Cluussen e{ al.. 1977; Ruhle e{ al., 1986.
1987; Mujata el al., 1983; Mecholsky. 1983). Providing the microcracks are not so large
that they readily coalesce. the dilatation caused by them can produce a significant crack
growth resistance (Evans and Faber. 1984). A secondary much smaller increase in toughness
results from the decrease in elastic modulus in the fracture process zone due to the micro
cracks (Evans and Faber, 1981. (984). The relative increase in the size of the particles
can result from differences in the coefficient of thermal expansion (Mujata e{ al.• 1983;
Mecholsky. 1983) or from phase transformation as in the zirconia-toughened aluminas
(Claussen. 1976; Claussen el al.. 1977; Ruhle e{ al., 1986. 1987). The residual stress
due to the volume expansion is an important factor which affects the formations of the
microcracks. In the former ceramics. stress-induced microcfHcking occurs if the particle
size is less than a critic:.tl value. or existing microcracks propagate if the residu~ll stresses
alone are sufficient to cause microcracking (Mujata e{ al.• 1983). With zirconia-toughened
alumina. radial microcracking does not usually accompany the stress-induced trans
formation -a given particle either tr'll1sforms under the stress field ncar the tip of a crack
or if already transformed causes microcracking under the combined action of the residual
and applied stresses (Ruhle e{ al.• 1986).

Existing calculations of the stress intensity factors at the tips of radial cracks emanating
from dilatation particks (Ruhle el al.. 1986; Krstic and Vlajic. 1983; Krstic. 1984) assume
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Fig. I. "Non-partick penetrating" annular nack.

that Sneddon'~ c1a~sic solution (Sneddon, 1946) for the penny-shaped crack can be used.
However, except under very high applied stress, the crack will not propagate far into the
n:~idtlal compressive stres~ regime of the second phase particle. A penny-shaped crack docs
not accurately model the behaviour of the actual annular crack. In this paper we solve thc
prohlcm of an annular crack surrounding a sccond pha~e particle which undergoe~ a rdative
size inlTease due to thermal expansion or transformation using the triple integral equation
mcthod (Cooke, 1%3; Tsai, 19X4; Selvadurai and Singh, 19X4, 19R5, 19X7; Selvadurai.
19X5). At high applied stress thc annular lTack will propagate into the residual comprc~sive
stress regime. In some cases where the second phase material is similar to the matrix and
very wdl bonded the annular crack will propagate into the second phase particles. An
example of this type oferacking i~ shown by Mujata ('I al. (19X3). lIowever, in other cases
where the particle is not so well bonded, any propagation into the (;llmpres~ive region will
take place by the crack running along the particle/matrix interface (Rlihlc ('I al., 19X7). The
present analysis only deals with the former type of crack growth where the annular crack
may penclrate into the particle.

2. TilE ANNULAR CRACK I'ROBLEM

A system con~isting of a spherical particle embedded in an inlinite brittle matrix and
having a surrounding annular crack is considered (Fig. I). The case where the crack extends
into the particle is ,i1~o considered (Fig. 1). It is assumed that the clastic constants fl.)r the
particle and the matrix arc identical so that the principle of superposition can be applied.
There arc two load ~ystem~: (a) the residual stresses due to the mismatch between thc
particle and matrix and (b) a uniform tensile stress (T.

The pressure l' between the particle and the matrix is given by

1/:'1::p = .
3(1-\')

(I)

where fl.)r phase tran~formation 1;1 is the stress-free strain and for therm,l1 expan~ion

mismatches r. 1 = (lm-11')LlT; E is the Young's modulus; \' is Poi~son's ratio; l is the
eoellicient of thermal expansion; and the subscripts m and p refer to the matrix and particle.
In the absence of any crack the residual stress field on the pl,lOe :: == 0 is given by

(1;(r,O) = - P for r < R,

and
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Fig. 2. "particle penetrating" annular crack.
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P(R)'<1:(r.O) =2 -; for r> R. (3)

where R is the radius of the particle. In the presence of an annular crack this residual stress
field is superimposed by the stress field

(1:(r,O) = P for c, < r < R. (4)

P(R).1
(1:(r.0)=-2 r for c" > r > R. (5)

where (", and c" are the radii of the inner and outer edges of the annular crack. there are
also the added conditions that on the plane == 0 the displacement u: is zero outside the
crack and the shear stress is zero.

The stress field due to an applied uniform stress (1 superimposed on the crack system
IS

<1: = -(1 for c, < r < Co, (6)

with the conditions that in the plane == O. u: is zero outside the crack and the shear stress
is zero. The solution to this problem of the annular crack under uniform stress has already
been given by Selvadurai and Singh (1985), but only for c,/co < 0.7.

The stress intensity factors K, and Ko at the inner and outer edges of the annular crack
are given by

K, = lim <1:(r. 0)J21t(c, - r).
'-("1

(7)

(8)

3. THE SOLUTION OF THE ANNULAR CRACK PROBI.EM

Hankel transforms can be used in axisymmetric problems to reduce the two inde
pendent variables (r. =) to a single variable =(Harding and Sneddon. 1945: Sneddon 1946.
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1951: Sneddon and Lowengrub, 1969). The biharmonic equation for the stress function <p
then becomes

where

G::;: eX. r<p(r)Jo(~r) dr,
Jo

(9)

(10)

Jo«(r) is a Bessel function of zero order and' is a parameter. On the plane: = 0, the
longitudinal stress and displacement can be written as

( II )

( 12)

where {J = ric" and ( ::;: "Ie",

(13 )

Inserting the boundary conditions given in Section 2 into eqns (II) and (12), we obtain the
following triple integral equations,

where

fL ,,/(t/)Jo(pJ/)d,,::;: g(p) (IX < P < I),
l)

1" J('1)Jo(p'1) d'1 ::;: 0 (1 < p < 00),

(I +v)(I-2v)c:
g(p) = £ O':(p,O):x < P < I,

( 14)

(15)

( 16)

(17)

and O':(p,O) is given by eqns (4) and (5) for the residual stress and eqn (6) for the applied
stress and where Gt = cdco '

Let

and

Then, we have,

gl(p) = g(p) (0 < p < :x),

g1(P) = .q(p) (1 < p < co).

(18)

(19)
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r 9,(P) J (20)K, = 1m --- 2Co7t(Cl-p).1'-.- C

and

. 9'(P) J (21)K o = 11m --- 2co7t(p-I).
1'-1+ C

where

C=
(I+v)(I-2v)c~

(22)
E

It is seen that one only needs to find 91(P) and 92(P) in order to determine the stress
intensity factors. We make a note that

(23)

and

(24)

Then the triple integral eqns (14-16) can be simplified as a pair of simultaneous integral
equations for .q I (u) and 92(U) that is written as (Cooke. 1963; Tsai. 1984; Sclvadurai and
Singh. 1984. 1985. 1987; Sclvadurai. 1985).

(0 < fJ < (x).

(I<p<oo).

(25)

(26)

Let Gil (.1') and G2\ (.1'), G12(.1') and Gds) satisfy the following simultaneous integral equa
tions:

(0 < p < (X), (27)

Then

(0 < P < (X),

(I < P < 00).

(29)

(30)
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(I + v)(l- 2v)c~
GI(S)=- E [G II (.I')+G I :(s)] (O<s<a).

(I + v)( I - 2\,)c,~
G:(s) = ---E' [G:J!s)+G::(s)] (I < s < x).

(31 )

(2)

gives the solution of integral eqns (25) and (26). Function g(u) is written as

CPII'
g(u) = - ---, (fJ < 11 < I).

2u

for the case when the crack does not penetrate into the particle and

{

CP (a<1I<{I)

g(lI) = CPf/'
-'1 ({J < u < I)

2u

(33)

(34)

if the crack penetrates into the particle. where II = Ric".
In order to get the approximate solutions of eqns (27 ·30). we usc a perturbation

method and express the solutions in series form.

GII(S) = (1 ianAln('\') (0 < .I' <:x).
n _ I a

(j: I (.I') = (1 2: a" 11 1" (.I') (I < .I' <~.c).
n-I

(35)

(36)

(0 < .I' < a).

(1<.1'<('1).

(37)

(38)

From Abel's integral equation (Cooke. 1963; Sclvadurai and Singh. 1985). we have.

2C d 1'S[(;II(S)+CI :(S)]
.l/I(P) = ..... "'-,'--i, ds (O<p<a).

np dp I' (S-_p_)I-

(40)

The stress intensity factors for the residual stress system K~·. K;, and those for the applied
stress K~. K~ can be obtained from cqns (20-21) as a series.

4. THE STRESS INTENSITY FACTORS FOR ANNULAR CRACKS SURROUNDING
DILATATION PARTICLES

The non-dimensional stress intensity factors at the inner and outer edges of an annular
crack under the influence of the residual stresses around a mismatched particle

(e = KP/pJ;;'~~) arc given in Table I and arc shown in Figs 3 and 4. To achieve sufficient
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accuracy for the stress intensity factors for J. < (U, it IS only necessary to retain ahout live
terms in the series npansions for el(ns Cl5 3X). Ilowc\·er. as :x -. I it is neccssary to take
up to a hundred terms to ensure an accurate result (for J. < n.lJ5 the accuracy is hetter than
O.25'Y.,). There is a limiting solution for 'J. dose to unity since in this case the problem is
identical to a two-dimensional crack of length (co'- c,) under a state of plane strain. Hence.
the limiting condition can he ohtained hy integration of the expression for the stress intensity
factor for a two-dimensional crack with point loads on the erack faces (paris and Sih. \W15)
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[;l;1,'" §-r
K: == -.) (1;(r.O) _O_dr.

n:(co-c, c. r-c,
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(41 )

(42)

The non-dimensional forms of these limiting solutions are shown in Figs 3 and 4. The stress
intensity factors are given by the empirical expressions

(43)

(44)

which are accurate to 0.25% over the entire range f3 == 0-1.
The stress intensity factors for an annular crack under a uniform tensile stress have

already been given by Selvadurai and Singh (1985) for !X up to 0.7. [n their solution they
take only five terms in the expression for eqns (42-45). We have extended the range up to
!X == I which again requires up to a hundred term~Ln eqns (42-45). The results for the non
dimensional stress intensity factors (k" == Kia j n:co) are given in Table 2 and Fig. 5. Once
again a limiting solution can be obtained for !X close to unity and is given by

(45)

These strcss intcnsity factors arc givcn by thc cmpirical cxprcssions

(46)

(47)

which ~lgain arc accurate to 0.25% over the entire range !X == 0-1.
Figure 5 also shows the non-dimensional stress intensity factor obtained by super

position for a dilatant particle with uniform stress applied. The effect of a crack penetrating
the dilatant particle is shown in Fig. 6 for Pj(1 == 2.

Table 2. The nun-dimensional slress inten
sity factors al the inner (k71 and outer edge

(k~l of the crack

9AS 29:2-8

1.0
0.833
0.714
0.625
0.556
0.500
0.333
0.250
0.200
0.100
0.050
0.020

0.0395
0.2963
0.3984
0.4685
0.5231
0.5686
0.7324
0.8510
0.9499
1.3230
1.8455
2.8881

0.0388
0.2830
0.3657
0.4149
0.4484
0.4729
0.5369
0.5648
0.58~

0.6097
0.6235
0.6314
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5. CONCLUSIONS

The stress intensity factors for annular cracks around dilatant particles have been
obtained by usc of Hankel transforms after the method of Selvadurai and Singh (1985) for
the complete range of inner to outer radii. These stress intensity factors arc accurate to
0.25%. Previous calculations of the stress intensity (Ruhle l't al.• 1987: Krstic <:1 a[.. \983:
Krstic. 1984) made using Sneddon's (1946) classic solution for a penny-shaped crack arc
only approximately correct if the annular crack is very large compared with the dilatant
particle-for small annular cracks the stress intensity factors are grossly overestimated.
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The stress intensity factor at the inner edge of an annular crack formed outside a
dilatant particle is always greater than that at the outer edge. Thus there is a strong tendency
for a crack to penetrate the dilatant particle. if the particle is well bonded to the matrix.
However. if there is no applied stress. the stress intensity factor decreases rapidly as the
crack penetrates the compressive stress zone in the dilatant particle (Fig. 3). If the com
pressive stress due to the dilatant particle is greater than the applied stress. initial crack
propagation into the dilatant particle is always stable. Crack propagation into the particle
becomes unstable only when the penetration is large.
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